
Meet Cyrus – TheQuery by Voice Mobile Assistant for the
Tutoring and Formative Assessment of SQL Learners∗

Josue Espinosa Godinez
Department of Computer Science

University of Idaho, USA
espi9890@vandals.uidaho.edu

Hasan M. Jamil†
Department of Computer Science

University of Idaho, USA
jamil@uidaho.edu

ABSTRACT
Being declarative, SQL stands a better chance at being the program-
ming language for conceptual computing next to natural language
programming. We examine the possibility of using SQL as a back-
end for natural language database programming. Distinctly from
keyword-based SQL querying, keyword dependence and SQL’s ta-
ble structure constraints are significantly less pronounced in our
approach. We present a mobile device voice query interface, called
Cyrus, to arbitrary relational databases. Cyrus supports a large type
of query classes, sufficient for an entry-level database class. Cyrus
is also application independent, allows test database adaptation,
and not limited to specific sets of keywords or natural language sen-
tence structures. Its cooperative error reporting is more intuitive,
and iOS-based mobile platform is also more accessible compared to
most contemporary mobile and voice-enabled systems.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
Graphical user interfaces; Auditory feedback; HCI theory, concepts
and models; Empirical studies in HCI; • Computing methodolo-
gies → Information extraction; Speech recognition; Knowledge
representation and reasoning; • Theory of computation→ Data-
base query languages (principles);

KEYWORDS
Query by Voice; SQL tutoring; query mapping; formative assess-
ment; self-paced learning; mobile learning system

ACM Reference Format:
Josue Espinosa Godinez and Hasan M. Jamil. 2019. Meet Cyrus – The Query
by Voice Mobile Assistant for the Tutoring and Formative Assessment of
SQL Learners. In The 34th ACM/SIGAPP Symposium on Applied Computing
(SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3297280.3297523

∗Research supported in part by a STEM Center grant, and National Science Foundation
grant DRL 1515550.
†Contact Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297523

1 INTRODUCTION
Although declarative programming is arguably more intuitive, stu-
dents still find the transition from imperative languages to SQL
hugely difficult. They often struggle to form complex queries that
are rich in semantic nuances, especially those involving nested sub-
queries or GROUP BY functions [2]. To help students learn SQL
better, researchers have been trying to develop various teaching
systems and learning strategies, and support them with powerful
online [12] and desktop tools [3]. Despite the recognition of its im-
portance, research in developing teaching tools for SQL, especially
smart tools have been scant [11, 12]. Most of the contemporary
systems focus on syntactic aspects and do not go far in teaching
the semantic and conceptual underpinnings of declarative program-
ming using SQL with the few exceptions of the automated SQL
exercise grading [6] and guided teaching [8] systems.

The recent introduction of voice services such as Amazon Alexa,
Apple Siri, and Google Assistant leveraged extensive research in
understanding and mapping natural language queries (NLQ) to SQL
[9] to substantially simplify access to data and to help users who
otherwise would not use the vast amount of knowledge to improve
their lives [13]. Internet of things (IoT) and smart devices research
are also encouraging people to use various digital home services
and mobile phone applications using voice recognition and speech
processing for automated information gathering from databases.
These successful voice technologies remain largely unexplored in
educational systems for teaching SQL to first-time learners. We
believe that integrating voice or natural language based query ca-
pabilities in online systems will make learning platforms powerful.
If such a system can be coupled with automated tutoring and grad-
ing functions, it can serve as a smart and comprehensive learning
environment for SQL.

1.1 Voice Assistant as a Teaching Aid
In recent years, there has been a significant shift in the size, tech-
nology, speed and cost of hardware devices for the better. Today,
the ubiquity of smart and mobile devices with large memories of-
fers us the opportunity to rethink how educational aids may be
designed for the new century. It is estimated that there are about
700 million Apple iPhones in use worldwide and this number could
reach 1 billion in a few years. With the unprecedented accessibility
afforded by such devices, it is important to consider their large-
scale applications in education, in particular, since a large number
of them are in the hands of students. It is thus natural to explore
the opportunity to help students learn using mobile devices, and
especially using effortless, convenient and ad hoc voice technology
to support uninhibited exploration.

https://doi.org/10.1145/3297280.3297523
https://doi.org/10.1145/3297280.3297523

SAC ’19, April 8–12, 2019, Limassol, Cyprus J. Godinez and H. Jamil

A substantial segment of users are also already familiar with
voice-interfaces and with prominent virtual assistants such as Siri.
It is thus conceivable that a voice-enabled SQL tutoring and assess-
ment tool along the lines of the systems such as PhotoMAT [14]
or [4] could support anytime online learning in a hands-free man-
ner, and with smart response readout options, students could self-
assess their SQL composition abilities over known test databases.
Naturally, platforms such as iOS with preexisting APIs for NLP,
speech-to-text, and speech synthesis are ideal due to their first-
party support, large user-base, and familiarity of voice-interface
systems. With the combination of widespread device availability,
inexpensive hardware cost (relative to specialized hardware), and
stable and heavily field-tested firmware, it is a prudent choice to
utilize this platform to implement such a system.

1.2 Advantages of a Voice Assistant
While the usefulness of voice interactions for interfacing with ap-
plications and databases are somewhat well understood, its use as a
teaching aid requires some justifications mainly because not many
researchers have used this technology for teaching systems. It is ar-
gued that voice interfacing to databases, in general, provides three
main advantages [10] – hands-free access, personalizable vocabu-
lary and dialogue-based querying. Given a set of learning objectives
of SQL query constructs and classes, all a student possibly wants is
to see whether the system generated SQL expression for a query
in English matches with his mental formulation of the query in
SQL, and produces an identical response. From this standpoint,
hands-free access to database querying engines and personalizable
vocabulary certainly could play major roles in a mobile SQL tu-
toring and assessment system, which are the major focus of this
research.

2 RELATED RESEARCH
Although text interfaces to databases [9] have been explored rel-
atively more than voice interfaces [7], their use for teaching SQL
is less explored [12]. While we can point to SQL teaching systems
such as [3, 6, 8, 11, 12], we are unable to discuss them in this paper
for the want of space except for EchoQuery [10] as this framework
has much in common with our approach in Cyrus. In EchoQuery,
users are able to communicate with the database using voice at
any time and queries can be asked incrementally, in steps, in a
context of prior queries and stateful dialogue-based refinement
are supported along with clarification if queries are incomplete or
ambiguous. Finally, EchoQuery allows for a personalized vocabu-
lary on a per-user basis, which makes the system robust. Although
Cyrus is not as adept at continuous querying, Cyrus does have a
more vigorous translation system for matching user queries over
heterogeneous schemes and handle numbers in NLQ better. Cyrus
can also map column/table names that span multiple words with
special delimiters such as “Track ID” to “Track_id” or “TrackId” by
maintaining a history stack with context.

3 CYRUS USER INTERFACE
Cyrus is a smart tutoring and assessment system for SQL designed
on the mobile iOS platform. The voice-enabled interface translates
natural English language queries on a test database into executable

SQL queries. A successful translation shows the translated query
and the computed results for the student to review and validate
her mental model of the query. Since Cyrus generates editable
SQL queries that can be executed optionally, students have the
opportunity tomaster the language through iterative refinement. As
a formative assessor or grader, Cyrus also compares systemmapped
queries with students’ translated queries over a test database. In the
role of a grader, to be deemed correct, a student SQL query must
compute identical views as does the system generated query. The
test queries are crafted by an instructor as database assignments
with escalating difficulty levels. In the remainder of this paper, we
use a music database as shown (with the primary keys underlined
for each table) in figure 1 to exemplify the features of Cyrus and for
other illustrative purposes. While we sketch how Cyrus maps NLQ
to SQL in section 4.3 and use examples to discuss the functionalities
of Cyrus on intuitive grounds, we defer the full treatment of the
NLQ to SQL mapping algorithm to an extended paper.

tracks
TrackID
Track
Artist
Composer
Genre
Media_Type
Album
Label
(a) Table: Tracks.

distributors
Distributor
Label
Region

(b) Table: Distributors.

charts
Album
Region
Standing
Year
Sales
(c) Table: Charts.

Figure 1: Scheme ofMusic Database.

3.1 Using Cyrus
Cyrus has two main modes, as a tutor, it allows students to choose
an example database, and in assessment mode, it additionally allows
to choose a difficulty level. In tutoring mode, it simply accepts voice
query in natural English, maps the query to SQL, executes it, and
shows the computed response and the SQL query it executed to
produce the result. Students are allowed to edit the SQL query or
write their own, bypassing the voice interface, for execution. In
assessment mode though, it shows only the test queries in English
at the difficulty level chosen by the student to transcribe in SQL.
However, in assessmentmode, the voice interface is disabled leaving
only the text interface for the students to write the SQL queries
without system assisted translation from NLQ. A score is shown
at the end of the session informing the student how well she did
according to the grading scheme of the instructor. Figure 2 shows
the Cyrus interface in both tutoring and assessment modes.

3.2 Supported Query Classes
In the current Cyrus prototype, our focus has been to support a
sufficient number of SQL query classes for an entry-level database
class and allow multiple natural language renditions of the queries
to support variability and personalization. Students with different

Cyrus – TheQuery by Voice Mobile Assistant for SQL Learners SAC ’19, April 8–12, 2019, Limassol, Cyprus

(a) Cyrus in tutoring mode.

(b) Cyrus in assessment mode.

Figure 2: Cyrus interface.

levels of spoken English skills (e.g., especially students with non-
English native languages) are expected to express differently in free
form languages, although the corresponding SQL renditions are
usually limited. Although in formative and summative assessment
mode, written queries will be framed by the course instructors,
in tutoring mode, the students are expected to frame their own
queries just by looking at the database schema and the instance.
Thus, the expressions of the queries in English will vary from
student to student necessitating a more flexible natural language
input support. In the sections below, we use the music database
scheme of figure 1 to illustrate the functionalities of Cyrus and
discuss the supported query classes on intuitive grounds. We note
that while Cyrus is able to map most queries, in the event it is
presented with a query for which it cannot find a mapping, Cyrus
will ask to restate the query differently in order to retry.

3.2.1 Wildcard Queries. Consider, for example, the query “List all
music tracks” over the music database. Obviously, the information
for all music albums are in the tracks table, and a wildcard query
will return the expected response. But, unlike other systems, this
query can be asked in multiple different ways in Cyrus, including
the following widely different forms, and all will still map to the
wildcard SQL query below.

SELECT *
FROM tracks;

(1) “Hey Cyrus, could you please show me all of the tracks I’ve got
in my database?”

(2) “What are the songs in the database?”
(3) “List all of my tracks for me.”
(4) “Tracks, please.”

In Cyrus, indeed an exceedingly large number of verbal syntaxes are
allowed so long sufficient keywords are used that can be successfully
related to a table name in the chosen database. In particular, query
2 above did not use the keyword tracks, yet Cyrus is able to relate
the tracks table to the songs keyword as a personalization feature
leveraging a synonym/vocabulary database.

3.2.2 Projection Queries. Often, specific field of tuples or columns
are of interest and need to be extracted. Cyrus supports such ex-
tractions as projection queries. However, this innocuous extension
of wildcard queries is relatively harder to map and its simplicity is
largely deceptive. Consider the following natural language queries.
These queries map to the SQL query

SELECT TrackId, Track
FROM tracks;

(5) “Show track id and name from the tracks table.”
(6) “Output the track ids and names in tracks.”
(7) “List the number and title of the songs.”
(8) “Track id, name, tracks.”

In these queries, Cyrus primarily looks for a table name to match
followed by matching column names, uniquely. Note that, the syn-
onyms and similarity functions it uses makes the matching process
complicated. Conceptually, it uses a maximizing function based on
Levenshtein Distance (discussed in section 4.3.2) to find a table and
attribute list pair that uniquely matches the terms in the English
query. In particular, query 7 above still maps to the SQL query

SAC ’19, April 8–12, 2019, Limassol, Cyprus J. Godinez and H. Jamil

above because number matches with TrackId, title with Track and
songs with tracks, and the combined similarity of the pair ⟨ songs,
{number, title}⟩ is much greater for the pair ⟨tracks, {TrackId, Track}⟩
than any other pairs.

3.2.3 Selection Queries. Queries satisfying constraints are also
supported in Cyrus. Consider the SQL query

SELECT *
FROM tracks
WHERE TrackId=1479 AND Composer=’Jimi Hendrix’;

which lists the track details for the song with the TrackID 1479 for
composer Jimi Hendrix, in the table tracks. This query, as usual,
can be asked in any of the following forms, among many others.

(9) “Get tracks composer Jimi Hendrix where the track id is 1479.”
(10) “Print Jimi Hendrix composed songs with the number 1479.”
(11) “Show me the tracks composed by Jimi Hendrix if the track id

is 1479.”
(12) “Tracks composer Jimi Hendrix 1479 track id.”

Cyrus maps these voice commands to the selection query above
using techniques similar to the projection queries. Projection, of
course, can be easily combined with a selection query, e.g., the SQL
query below is a mapping from the NLQ that follows.

SELECT Track, Media_Type, Genre
FROM tracks
WHERE TrackId=1479 AND Composer=’Jimi Hendrix’;
(13) “Print track name, media type and genre of Jimi Hendrix com-

posed songs whenever the number is 1479.”

3.2.4 Join or Multi-Relational Queries. Join queries, often called
multi-relational or SPJ (select-project-join) queries, are in fact the
most general and common type of query classes in relational databases.
Such queries require linking more than one relations to form a large
table on which the selection conditions and projections are applied
to find responses. For example, consider the queries
(14) “List all the artists and their albums distributed by Redeye

Distribution in USA that charted top 5 in USA in 2017.”
(15) “List top 5 ranked 2017 albums and artists distributed by Redeye

Distribution in USA.”
Cyrus constructs the join query below over the scheme in figure 1
for either of the two NLQs above.

SELECT Album, Artist
FROM tracks NATURAL JOIN distributors NATURAL JOIN charts
WHERE Distributor=’Redeye Distribution’ AND Year=2017
AND Standing ≤ 5;

From our example database, we compute the response as Reflection
by Brian Eno and Take Me Apart by Kelela which ranked higher
than 6 in multiple charts in 2017 under the labelWarp, which can
be computed only after joining these three tables. Although Redeye
distributed other albums such as Death Peak by Clark, Shake the
Shudder by !!!, and London 03.06.17 by Aphex Twin, they did not
make the top 5 charts anywhere in 2017.

3.2.5 Division Queries. Consider the queries below.
(16) “List artists who recorded albums under all the labels artist

Gone is Gone has ever recorded.”

(17) “List all the artists who have recorded albums at least with all
the labels who recorded Gone is Gone too.”

In such queries, we are interested to find an association between
one object with a set of objects that cannot be computed using
one simple join query – called the division queries. While it can be
computed in several steps without using the concept of division,
Cyrus maps these queries to the nested SQL query below utilizing
SQL’s tuple variable feature. Recognizing andmapping such a query
is one of the most difficult ones in NLQ to SQL translation.

SELECT Artist
FROM tracks AS t

WHERE
(SELECT Label
FROM tracks
WHERE Artist=t)

CONTAINS

(SELECT Label
FROM tracks
WHERE Artist=

’Gone is Gone’)

3.2.6 Aggregate Queries with Sub-Group Filtering. In contrast, ag-
gregate queries insist on creating groups on which aggregate oper-
ations such as sum, avg, max, min, etc. are computed and filter
conditions applied. For example, consider the query
(18) “Print the artists who sold more than 2 million copies of their

albums in USA in 2017.”
This query requires filtering out first only those albums sold in 2017
followed by creating a subgroup (GROUP BY) of albums with their
sales record to find the total sales and then only selecting those
artists who have more than 2 million in sales within this filtered
group (HAVING clause). On our example database, Cyrus translates
this NLQ to the following SQL query.

SELECT Artist, SUM(Sales)
FROM tracks NATURAL JOIN charts
WHERE Year=2017
GROUP BY Artist
HAVING SUM(Sales) > 2,000,000

4 CYRUS SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Voice processing apps are popular on mobile platforms and mobile
app operating systems such as Apple iOS, Microsoft Phone OS, HP
WebOS, and Google Android, which are supporting an increasing
number of such tools for app developers. The tool support includes
voice-to-text, speech analysis, and text-to-speech libraries. One
of the leading intelligent voice-processing systems is Apple’s Siri
on the iOS platform. In iOS, in particular, Apple supports NSLin-
guisticTagger, AVSpeechSynthesizer, and SFSpeechRecognizer classes
in its Foundation and Speech frameworks suit that are relatively
more mature and stable. NSLinguisticTagger is a uniform interface
that can be used for a variety of natural language processing func-
tions such as segmenting natural language text into paragraphs,
sentences, or words, and tag information about those segments,
such as part of speech, lexical class, lemma, script, and language.
The AVSpeechSynthesizer class, on the other hand, can be used to
produce synthesized speech from text, while the SFSpeechRecog-
nizer class helps to recognize the speech of a locale. Availability
of these enabling tools was the primary motivation for choosing
iOS platform for Cyrus along with the fact that Apple iPhone is the
most widely used mobile smart device.

Cyrus – TheQuery by Voice Mobile Assistant for SQL Learners SAC ’19, April 8–12, 2019, Limassol, Cyprus

At a high level, the Cyrus query processing pipeline proceeds in
five distinct steps - voice (query) acquisition, voice to text transcrip-
tion, text parsing, text to SQL mapping, and SQL query processing.
In Cyrus, we have assembled the pipeline leveraging iOS speech
library classes embedded within our query processing system. We
describe the process below in some detail but defer a full discussion
to an extended version of this article.

4.1 Voice Query Acquisition and Transcription
On the iOS platform, SFSpeechRecognizer requires the use of permis-
sion through its requestAuthorization function for app permission
to perform speech recognition, followed by a monitoring session
using SFSpeechRecognitionTask via the AVAudioSession to create a
new live recognition request using SFSpeechAudioBufferRecogni-
tionRequest. This recognition task then keeps track of the user’s
speech and utilize a result handler to generate the most accurate
text transcription possible until the recognition request has been
completed. While these functions instantiate to local language by
default, we have used English initialization to limit variability.

4.2 Parsing Natural Language Queries
Once the text transcription is received, semantic understanding
of the text query can begin using natural language processing.
We preprocess the text using a process called lemmatization that
standardizes the text query. For this purpose, we use the power-
ful NSLinguisticTagger class which is able to perform language
identification, tokenization, lemmatization, part of speech (PoS)
tagging, and named entity recognition tasks with proper instantia-
tions. As mentioned earlier, we instantiate our language to English
and proceed with the remaining steps in parsing the text. After
tokenization, a lemmatization step is performed to reduce inflec-
tional forms and often derivationally related forms of words to a
common base form. For example, words such as am, are, and is are
replaced with be, a stem form of a word token, to help transcribe
sentences such as the boy’s cars are different colors to the boy car
be differ color. Lemmatization help in situations when inflectional
and derivational forms force us to search for too many words and
establish their semantic meanings making understanding difficult
although the words involved differ in their flavor.

Before we initiate PoS tagger in NSLinguisticTagger to obtain a
tagged string Qp , we include tagger option .joinNames to collapse
“San Francisco” to “SanFrancisco” to be able to treat this token as a
singular entity instead of two separate words, and enumerate the
tags within the string using a name type and lexical class scheme,
to aid semantic matching of the tokens with the database scheme
in our next step.

4.3 Text Processing for Schema Recognition
Mapping the PoS tagged and enriched text query is a complex pro-
cess. In Cyrus, we follow a heuristic approach for the identification
of table names for the FROM clause, attribute lists in the SELECT
clause and Boolean conditions in the WHERE clause of all SQL
queries. This approach also helps us avoid complex grammatical
and semantic analysis of the text query that may not bear fruit
at the end anyway. But by doing so we risk failure even on an
otherwise mappable semantically correct query.

4.3.1 Levenshtein Distance for String Matching. To match entities
referenced in the English query with the table names in the data-
base, and to map possible properties of entities to attribute names
of tables, we leverage the popular Levenshtein distance for term
matching, which basically is an edit distance function with some in-
teresting properties, including triangle inequality. Mathematically,
Levenshtein distance between two strings a and b is a function of
the form

leva,b (i, j) =



max(i, j) if min(i, j) = 0,

min


leva,b (i − 1, j) + 1
leva,b (i, j − 1) + 1
leva,b (i − 1, j − 1)+

1(ai,bj)

otherwise.

where i = |a | and j = |b | are lengths of strings a and b, and 1(ai,bj)
is the indicator function which equals to 0 when ai = bj and equal
to 1 otherwise, and leva,b (i, j) is the distance between the first i
characters of a and the first j characters of b. Note that the first
element in the minimum corresponds to deletion (from a to b), the
second to insertion and the third to match or mismatch, depending
on whether the respective symbols are the same. As an example,
consider the strings “eaten” and “sitting.” We can transform or edit
“eaten” in five steps,

eaten
1
→ saten

2
→ siten

3
→ sittn

4
→ sittin

5
→ sitting

by first substituting “s” for “a”, then substituting “i”
for “a”, then substituting “t” for “e”, then inserting “i”
before “n", and finally inserting “g” at the end.

to make it “sitting,” i.e., leveaten,sit t inд(|eaten |, |sittinд |) = 5. We
use a special case of leva,b (i, j) = 0 when the strings a and b are
identical or one is a substring of the other.

4.3.2 Table and Column Name Recognition. Since the input to
Cyrus is a voice query, we have at least two input data types that we
are able to leverage, the sound and the text transcription. Assuming
that the voice to text translator was flawless, we can combine ana-
lytical tools for both to make sense of the English query in order to
map it to an equivalent SQL query. We illustrate the process using
the example query 11 in section 3.2.3. For this query (superscript
shows the word’s sequential position in the sentence),

Show1 me2 the3 tracks4 composed5 by6 Jimi7 Hendrix8

if9 the10 track11 id12 is13 147914

the NSLinguisticTagger will generate the PoS tags and the universal
and enhanced dependencies shown in figure 3.

To identify the table names, we assign preference to the terms
for matching in the enhanced dependency graph and start with the
nodes that have the least in-degrees and are not stop words [1], i.e.,
we consider only Show1, tracks4, compounds of Jimi7 and Hendrix8
(Jimi Hendrix), and track11 and id12 (track id), for which the in-
degrees are respectively 0, 1, 2 and 2. We discard Show because
we assume it as a database command and also because it does
not match with any database table names “closely.” The closeness
of a term with another term is determined using a combination
of measures such as σ (a,b) = 1 − homo(a,b)+λ(a,b)+ψ (a,b)

3 , where
homo(a,b),ψ (a,b), and λ(a,b) respectively are homonym, substring
similarity, and Levenshtein similarity functions ranging between

SAC ’19, April 8–12, 2019, Limassol, Cyprus J. Godinez and H. Jamil

Figure 3: Parsing query 11 using NSLinguisticTagger.

[0, 1]. Function ψ (a,b) is defined as sub(a,b)
|a | such that sub(a,b)

returns the length of maximum continuous substring of a of b,
and λ(a,b) is defined as the ratio max (|a |, |b |)−leva,b (|a |, |b |)

max (|a |, |b |) , where
higher the value of σ (a,b), closer is term a to b.

Let us call these terms the set Tn while we call the set of all
terms in the sentence without stop words Tp . We compute σ (a,b)
for all terms a ∈ Tn , and for all terms b ∈ S where S is the set of
table names in database D, and annotate each term a with their
similarity score σ . We discard all terms a′ ∈ Tn from Tn for which
there exists another term a ∈ Tn such that σ (a,b) ≫ σ (a′, c). For
example, for query 11, we discard the compound term Jimi Hendrix,
but retain track id along with tracks, because we have a table in
D named Tracks. We call this new set Tc , and call the set of table
names in D that matched with the terms in Tc , Td . We maintain a
list Lt of triples ⟨a, r ,σ (a, r)⟩ such that a ∈ Td and r ∈ S , for every
r that met the filter condition σ (a, r) ≫ σ (a′, c).

In our next step, for every triplem ∈ Lt of the form ⟨a, r ,ψ ⟩, we
compute a similarity score Ψ as follows.

Ψ(a, r) = σ (a, r) + Σ
|Tp |
i=1 µ(ai ,bi) − π (A)

where, µ(ai ,bi) is a Stable Marriage [5] matching function such
that pairwise matching is maximized for the terms in ai ∈ Tp (i.e.,
the candidates) and the attributes of the table r (R), i.e., bi ∈ R. The
one to one function µ assigns σ (ai ,bi) the highest matching score
possible such that for no other bj ∈ R, σ (ai ,bj) > σ (ai ,bi). The

terms that could not be matched are assigned 0. If the set of terms
ai ∈ Tp that could not be matched is A, then π (A) = |A |

|Tp |−1 is a
penalty function that compensates for the missing candidates not
finding a matching partner. Once we compute Ψ(a, r) for every
m ∈ Lt , we choose distinct r ’s for which Ψ(a, r) is maximum and
insert pairs ⟨r ,Tp \A⟩ in a list Ft of tables names r for the SQL query
we intend to construct using attributes B = Tp \A, which concludes
the process of table and column name identification process.

4.4 Text to SQL Mapping and Query Processing
In general, construction of an SQL query from an NLQ is a complex
and involved task. Especially, when reputed PoS parsers such as
Stanford CoreNLP parser too pose significant challenges in the
analysis process. For example, as shown in figure 4(a), CoreNLP
parser does not recognize the singer Gone is Gone as a named
entity for query 16. Instead, it identifies the artist as three separate
verb incarnations. In our heuristic mapping process, we keep in
mind that terms such as “all” and “every” and their synonyms play
important roles in division queries and that parsers do not always
identify all possible named entities, we proceed to analyze the
dependency graph cautiously.

Our table and column name identification process will isolate
tracks as the table name, and Artist, Album, and Label as the at-
tributes of interest for table Tracks during the initial step. For the
division query 16, we look for a set of objects that are contained

Cyrus – TheQuery by Voice Mobile Assistant for SQL Learners SAC ’19, April 8–12, 2019, Limassol, Cyprus

(a) Division query 16.

(b) Aggregate/Sum query 18.

Figure 4: Dependency parsing.

in another – a set of labels. We do so because the noun “artists”
record “albums”, and there is a second term “recorded” at the end
of Qp , we look to see if other artists are linked. We find in the
dependency graph that “recorded” is linked to “Gone” through a
verb “has” and a modifier “ever”, and they are after the second noun
“artist”, we conclude that the set of terms between “artist” and “has”
is a named entity if the NSLinguisticTagger did not do so already,
and we analyze it further. We then discover that the second “artist”
is qualified – “all the labels”, and so we construct the sub-query

SELECT Label
FROM tracks
WHERE Artist= ’Gone is Gone’

The nsubjpass link from Gone is Gone back to the first noun “artist”
helps us construct the container subquery and tie it up with the
driver query completing the division query.

SELECT Label
FROM tracks
WHERE Artist= t

Aggregate queries such as query 18 are constructed similarly by
analyzing the dependency graph in figure 4(b), and realizing that it
is also a join query over the attributes Artist, Sale, Region, Album,
and Year in the tables Tracks and Charts. We note that our aggre-
gate query mapping algorithm shares similarity with the approach
presented in [15], without the restrictions they impose on the NLQ.

5 CONCLUSION AND FUTURE RESEARCH
There are many approaches to advancing NLP-based voice querying.
By having an interactive spoken dialogue interface for querying
relational databases, we were able to build a functional learning
management system for SQL that has the potential to support
the classes of queries novice SQL learners encounter frequently.
In our first edition of Cyrus, our focus was to build a concept
system to demonstrate its feasibility as a voice assistant. In our
testing, we have observed that Cyrus was successful in mapping
queries 1 through 18 properly and executed them flawlessly on
our test database. The division and aggregate queries remain under

refinement and further adjustment as they are currently minimally
functional. Despite its relatively weaker ability to map all division
and aggregate queries, the progress Cyrus embodies is nonetheless
intellectually satisfying which we plan to address in future. The
complete mapping algorithm, which we have omitted in this paper
for the want of space, along with a first-database course classroom
evaluation remain as our immediate future research.

REFERENCES
[1] 2016. English Stop Words List - Github. https://tinyurl.com/y86xbn9e. Accessed:

January 18, 2018.
[2] Alireza Ahadi, Julia Coleman Prior, Vahid Behbood, and Raymond Lister. 2015. A

Quantitative Study of the Relative Difficulty for Novices of Writing Seven Differ-
ent Types of SQL Queries. In Proceedings of the ACM Conference on Innovation
and Technology in Computer Science Education, Vilnius, Lithuania, July 4-8, 2015.
201–206.

[3] Peter Brusilovsky, Sergey A. Sosnovsky, Michael Yudelson, Danielle H. Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming with
Interactive Tools: From Integration to Personalization. TOCE 9, 4 (2010), 19:1–
19:15. https://doi.org/10.1145/1656255.1656257

[4] Chih-Ming Chen and Ming-Chuan Chen. 2009. Mobile formative assessment tool
based on data mining techniques for supporting web-based learning. Computers
& Education 52, 1 (2009), 256–273. https://doi.org/10.1016/j.compedu.2008.08.005

[5] BegumGenc, Mohamed Siala, Barry O’Sullivan, and Gilles Simonin. 2017. Finding
Robust Solutions to Stable Marriage. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017. 631–637.

[6] Carsten Kleiner, Christopher Tebbe, and Felix Heine. 2013. Automated grad-
ing and tutoring of SQL statements to improve student learning. In 13th Koli
Calling International Conference on Computing Education Research, Koli, Finland,
November 14-17, 2013. 161–168.

[7] Sachin Kumar, Ashish Kumar, Pinaki Mitra, and Girish Sundaram. 2013. Sys-
tem and Methods for Converting Speech to SQL. CoRR abs/1308.3106 (2013).
arXiv:1308.3106 http://arxiv.org/abs/1308.3106

[8] Dejan Lavbic, Tadej Matek, and Aljaz Zrnec. 2017. Recommender system for
learning SQL using hints. Interactive Learning Environments 25, 8 (2017), 1048–
1064. https://doi.org/10.1080/10494820.2016.1244084

[9] Fei Li and H. V. Jagadish. 2016. Understanding Natural Language Queries over
Relational Databases. SIGMOD Record 45, 1 (2016), 6–13.

[10] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Çetintemel, and Tim Kraska.
2016. Making the Case for Query-by-Voice with EchoQuery. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016. 2129–2132.

[11] Antonija Mitrovic and Stellan Ohlsson. 2016. Implementing CBM: SQL-Tutor
After Fifteen Years. I. J. Artificial Intelligence in Education 26, 1 (2016), 150–159.
https://doi.org/10.1007/s40593-015-0049-9

[12] Julia R. Prior. 2014. AsseSQL: an online, browser-based SQL skills assessment tool.
In Innovation and Technology in Computer Science Education Conference Uppsala,

https://tinyurl.com/y86xbn9e
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1016/j.compedu.2008.08.005
http://arxiv.org/abs/1308.3106
http://arxiv.org/abs/1308.3106
https://doi.org/10.1080/10494820.2016.1244084
https://doi.org/10.1007/s40593-015-0049-9

SAC ’19, April 8–12, 2019, Limassol, Cyprus J. Godinez and H. Jamil

Sweden, June 23-25, 2014. 327.
[13] Arsénio Reis, Dennis Paulino, Hugo Paredes, and João Barroso. 2017. Using

Intelligent Personal Assistants to Strengthen the Elderlies’ Social Bonds - A
Preliminary Evaluation of Amazon Alexa, Google Assistant, Microsoft Cortana,
and Apple Siri. In Universal Access in Human-Computer Interaction. Human and
Technological Environments - 11th International Conference, Held as Part of HCI
International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part III.
593–602.

[14] Tia Shelley, Chandan Dasgupta, Alexandra Silva, Leilah Lyons, and Tom Moher.
2015. PhotoMAT: A Mobile Tool for Aiding in Student Construction of Research
Questions and Data Analysis. Technology, Knowledge and Learning 20, 1 (2015),
85–92. https://doi.org/10.1007/s10758-014-9235-3

[15] Zhong Zeng, Mong-Li Lee, and Tok Wang Ling. 2016. Answering Keyword
Queries involving Aggregates and GROUPBY on Relational Databases. In Pro-
ceedings of the 19th International Conference on Extending Database Technology,
EDBT 2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16,
2016. 161–172.

https://doi.org/10.1007/s10758-014-9235-3

	Abstract
	1 Introduction
	1.1 Voice Assistant as a Teaching Aid
	1.2 Advantages of a Voice Assistant

	2 Related Research
	3 Cyrus User Interface
	3.1 Using Cyrus
	3.2 Supported Query Classes

	4 Cyrus System Architecture and Implementation
	4.1 Voice Query Acquisition and Transcription
	4.2 Parsing Natural Language Queries
	4.3 Text Processing for Schema Recognition
	4.4 Text to SQL Mapping and Query Processing

	5 Conclusion and Future Research
	References

